Increasing the available water diversion volume of water source project through flood resource utilization: A case study of the middle route of the South-to-North water diversion project in China
Xiaoqi Zhang,
Han Yang,
Jijun Xu,
Yongqiang Wang,
Pan Liu and
Chong-Yu Xu
Reliability Engineering and System Safety, 2025, vol. 253, issue C
Abstract:
Water supply operating rules are critical for guaranteeing the safety of the water supply in the source project and receiving areas and overcoming the uneven distribution of water resources among different regions. Previous studies have mainly focused on optimizing the water supply operating rules to balance multiple benefits under the current engineering design parameters. In this study, a framework is proposed in which the water supply operating rules for the resource reservoir are adapted through flood resource utilization. The correlations among seasonal floods are first analyzed by considering the influence of water diversion projects. The seasonal flood-limited water levels (FLWLs) are then re-designed in terms of a flood damage assessment index under the deduced most-probable seasonal floods. Finally, the water supply operating curves of the resource reservoir are optimized by adopting the recommended seasonal FLWLs. The middle route of the South-to-North Water Diversion Project in China is taken as a case study. The results show that the recommended seasonal FLWLs are 160.2 m in summer and 164.2 m in autumn, and that the annual average available water diversion volume can be increased by 0.52 billion m3 without increasing the flood risk. Compared with the current water supply operating rules, the optimal operating curves make the annual distribution of the available water diversion volume more uniform in different typical-year scenarios and reduce the surplus reservoir water. These findings are helpful for exploring the potential of water resource utilization.
Keywords: Water diversion project; Available water diversion volume; Flood limited water level; Conditional value-at-risk; Flood resource utilization (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832024006021
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024006021
DOI: 10.1016/j.ress.2024.110530
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().