EconPapers    
Economics at your fingertips  
 

Generalized zero-sample industrial fault diagnosis with domain bias

Li Cai, Xuanhong Deng, Hongpeng Yin, Jingdong Lin and Yan Qin

Reliability Engineering and System Safety, 2025, vol. 253, issue C

Abstract: Generalized zero-sample fault diagnosis (GZSFD) is a challenging task involving the diagnosis of all samples from both previously seen and unseen faults. However, the scarcity of unseen samples for training causes that existing methods are hindered by domain bias, where unseen faults are more likely to be misclassified as seen faults. In this article, an efficacious solution is proposed by constructing an unseen fault detector for test samples in GZSFD with domain bias, which utilizes the detected unseen-sample knowledge to enhance the diagnosis performance. Specifically, a ResNet-based one-dimensional convolutional neural network is designed for high-quality feature extraction. Also, a Kullback–Leibler divergence-based distribution threshold detector is constructed for the identification of test samples. Afterwards, test samples are detected and distinguished into seen or unseen classes. In detected unseen classes, a zero-sample fault diagnosis (ZSFD) problem is undertaken, while in detected seen classes, a sub-GZSFD problem is addressed. For ZSFD tasks, to leverage the unseen samples in the test set, a clustering-based scheme without a predefined cluster number is used for the detected unseen fault. For sub-GZSFD tasks, combined with classification results in the ZSFD task, two embedding strategies are proposed to further mitigate the domain bias. They learn a shared weight and the optimal weights of semantic attributes from the feature space to the semantic embedding space, respectively. Using the shared fine-grained semantic attribute descriptions as auxiliary information, the final fault category can be determined. Experimental results showcase that the proposed strategies effectively alleviate the domain bias in GZSFD tasks.

Keywords: Fault diagnosis; Generalized zero-shot learning; Domain bias; Semantic embedding (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832024006434
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024006434

DOI: 10.1016/j.ress.2024.110571

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024006434