EconPapers    
Economics at your fingertips  
 

Sparse graph structure fusion convolutional network for machinery remaining useful life prediction

Lingli Cui, Qiang Shen, Yongchang Xiao, Dongdong Liu and Huaqing Wang

Reliability Engineering and System Safety, 2025, vol. 254, issue PA

Abstract: Effective prediction of machinery remaining useful life (RUL) is prominent to achieve intelligent preventive maintenance in manufacturing systems. In this paper, a sparse graph structure fusion convolutional network (SGSFCN) is proposed for more accurate end-to-end RUL prediction of machine. A novel node-level graph structure called time series shapelet distance graph (TSSDG) is designed to convert the time series to node feature. The SGSFCN model is proposed to learn degradation information from the graph structure. In SGSFCN, a sparse graph structure (SGS) layer and a fusion graph structure (FGS) layer preceding the graph convolutional network (GCN) are designed to learn the SGS from node representation and fuse the original graph structure, enabling the graph structure and node update iteratively in subsequent layers. Concurrently, a bidirectional long short-term memory network (BiLSTM) layer is integrated to capture the global temporal dependencies. The method is validated by two test rig data, and results demonstrate that the proposed method offers significantly higher prediction accuracy of RUL compared to several state-of-art methods.

Keywords: Sparse graph structure; Remaining useful life; Rotating machinery; Graph network (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S095183202400663X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:254:y:2025:i:pa:s095183202400663x

DOI: 10.1016/j.ress.2024.110592

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:254:y:2025:i:pa:s095183202400663x