EconPapers    
Economics at your fingertips  
 

Urban natural gas pipeline operational vulnerability under the influence of a social spatial distribution structure: A case study of the safety risk patterns in Kunming, China

Jiarui Xu, Chunhou Ji, Lihong Yang, Yun Liu, Zhiqiang Xie, Xingfeng Fu, Fengshan Jiang, Mengfan Liao and Lei Zhao

Reliability Engineering and System Safety, 2025, vol. 254, issue PA

Abstract: Frequent urban natural gas pipeline accidents pose a serious threat to the safety of people and property in surrounding areas. However, current research on natural gas pipeline risks primarily focuses on evaluating the pipelines themselves, with no established method for assessing the impact of pipeline disasters on surrounding areas. This paper proposes an urban natural gas pipeline risk assessment method that integrates the physical attributes of the pipelines with an analysis of social vulnerability based on urban social spatial distribution. Using urban Point of Interest (POI) data, a social spatial distribution model for potential natural gas pipeline accidents is constructed. The risk of pipeline failure is assessed based on physical vulnerability, while the consequences of failure are evaluated through social vulnerability. This method combines the analysis of physical and social vulnerabilities to achieve a comprehensive urban natural gas pipeline risk assessment. The results identified 68 out of 6148 pipelines in the study area as "double high" pipelines, characterized by high physical vulnerability (relatively high risk pipelines) and high social vulnerability (involving level IV areas). The high risk communities identified in the study area are the Cuihu West Road Community and the Daguan Commercial City Community, highlighting the characteristics of risk distribution. The findings suggest that this study contributes to improving urban resilience to natural gas pipeline incidents, reducing potential economic losses and public impacts, and enhancing urban public safety. It also provides new insights into natural gas pipeline risk assessment and urban public safety research.

Keywords: Urban pipelines; Pipeline risk; Infrastructure resilience; Natural gas pipeline safety; Vulnerability; Social spatial impact (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832024006641
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:254:y:2025:i:pa:s0951832024006641

DOI: 10.1016/j.ress.2024.110593

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:254:y:2025:i:pa:s0951832024006641