EconPapers    
Economics at your fingertips  
 

An uncertainty-incorporated active data diffusion learning framework for few-shot equipment RUL prediction

Chao Zhang, Daqing Gong and Gang Xue

Reliability Engineering and System Safety, 2025, vol. 254, issue PB

Abstract: In predicting the remaining useful life (RUL) of critical equipment, the challenge of obtaining degradation data and the limitation of data volume lead to few-shot problems that significantly impact prediction accuracy. To address this issue, this paper introduces a reinforcement learning feedback loop mechanism for predicting the RUL of critical equipment. Initially, the framework uses a data diffusion model to generate a dataset that closely approximates the distribution of the labeled samples for data augmentation. Subsequently, Bayesian deep learning and Monte Carlo (MC) dropout inference provide uncertainty quantifications for RUL interval predictions. An active learning strategy, which is based on uncertainty and diversity, converts unlabeled samples into labeled samples, thereby selecting the most effective training dataset. In each iteration, the model adjusts its strategy for selecting and generating data based on the current state of learning, dynamically adapting to the needs of the learning process via Bayesian methods. The proposed prediction framework was validated through experiments using the C-MAPSS and NASA battery datasets. The results indicate that the application of data diffusion and active learning strategies significantly enhances prediction performance, increasing confidence by 42 %. Comparative experiments with other benchmark methods demonstrate that the proposed method reduces prediction uncertainty by at least 15 %.

Keywords: Remaining useful life; Data diffusion; Active learning; Bayesian deep learning; Prediction (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832024007038
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:254:y:2025:i:pb:s0951832024007038

DOI: 10.1016/j.ress.2024.110632

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-05-25
Handle: RePEc:eee:reensy:v:254:y:2025:i:pb:s0951832024007038