An optimal two-dimensional maintenance policy for self-service systems with multi-task demands and subject to competing sudden and deterioration-induced failures
Yian Wei and
Yao Cheng
Reliability Engineering and System Safety, 2025, vol. 255, issue C
Abstract:
Self-service systems, such as electric vehicle charging piles (EVCPs), are typically deployed without on-site personnel. While frequent maintenance ensures high service revenue, it also leads to significant maintenance setup costs. Therefore, balancing service revenue and maintenance costs is essential for profit maximization. In this paper, we develop a maintenance policy optimization framework to maximize the profit rate of a fleet of self-service systems. First, we propose a maintenance policy that ensures sufficient functional systems while preventing high corrective maintenance costs. Next, we model the fleet's state transition process and its profit rate by characterizing two unique failure-induced demand-and-system interactions: demand switching and stepwise demand arrival rates, where the demands involve multiple tasks and systems are subject to multiple failure modes with non-constant occurrence rates. We develop a Tabu-search algorithm with random exploration to optimize the maintenance policy. Building on this, we investigate the impacts of key model parameters through a case study of thirteen EVCPs in Hong Kong and draw implications for profit maximization.
Keywords: Self-service systems; Two-dimensional maintenance policy; Competing failures; Multi-task demands; Failure-induced demand switching (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832024006999
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:255:y:2025:i:c:s0951832024006999
DOI: 10.1016/j.ress.2024.110628
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().