Two-head classifier guided domain adversarial learning for universal domain adaptation in intelligent fault diagnosis
Jiyang Zhang,
Xiangxiang Wang,
Zhiheng Su,
Penglong Lian,
Hongbing Xu,
Jianxiao Zou and
Shicai Fan
Reliability Engineering and System Safety, 2025, vol. 256, issue C
Abstract:
Domain adaptation (DA) methods have been widely used in cross-domain fault diagnosis to mitigate the distribution discrepancy between data from different working conditions. However, traditional DA methods are designed for specific one known category shift between domains. When prior knowledge about relationships between source and target label sets is unknown, the applicability of these methods is limited. To address this issue, a universal domain adaptation method named two-head classifier guided domain adversarial learning (THC-DAN) is proposed, which can handle all category shift scenarios in DA, including closed-set, partial-set, open-set, and open-partial-set. Specifically, we develop a domain adversarial network with an elegantly designed two-head classifier and adapt it to target domain. During adaptation, we first introduce an informative consistency score based on the two-head classifier to distinguish target private samples. Then, the consistency separation loss is proposed to push these samples away from classification boundaries. Finally, to realize the safe alignment on common classes between domains, the weighted adversarial learning based on the two-head classifier’s prediction probability is presented to weaken effects of source private samples. Experiments under all DA scenarios on datasets from Case Western Reserve University, Paderborn University, and our own Drivetrain Prognostics Simulator demonstrate the effectiveness of THC-DAN.
Keywords: Intelligent fault diagnosis; Cross-domain fault diagnosis; Transfer learning; Universal domain adaptation; Two-head classifier; Domain adversarial learning (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832024007798
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:256:y:2025:i:c:s0951832024007798
DOI: 10.1016/j.ress.2024.110708
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().