EconPapers    
Economics at your fingertips  
 

Reconstruction-based Deep Unsupervised Adaptive Threshold Support Vector Data Description for wind turbine anomaly detection

Dandan Peng, Wim Desmet and Konstantinos Gryllias

Reliability Engineering and System Safety, 2025, vol. 260, issue C

Abstract: The global deployment of wind turbines as a sustainable and clean energy source underscores the criticality of early anomaly detection to ensure their safe operation, improve power generation efficiency, and reduce downtime costs. Yet, acquiring sufficient labeled and faulty data is time-consuming and expensive in practical applications, limiting the use of supervised learning methods. To this end, this paper introduces a new approach, namely the Reconstruction-based Deep Unsupervised Adaptive Threshold Support Vector Data Description (DUA-SVDD) model, for wind turbine anomaly detection. DUA-SVDD integrates reconstruction-based and boundary-based anomaly detection paradigms, synthesizing comprehensive and detailed representation information from dynamic monitoring data, encoding the distribution and patterns of normal samples across multiple levels. This model employs a joint optimization mechanism to minimize reconstruction errors and hypersphere volume simultaneously in the latent space, resolving the hypersphere collapse issue observed in Deep Support Vector Data Description (DeepSVDD). It constructs a well-structured latent space proficient in handling data noise and variations, allowing SVDD to establish more robust spherical boundaries. Additionally, it proposes an adaptive threshold algorithm based on pseudo-data to accurately differentiate abnormal from normal patterns. The method is tested and evaluated on real wind farm SCADA datasets. A comparative analysis against state-of-the-art methods highlights the superior performance of the proposed model in detecting blade icing on wind turbines, achieving average AUC values of 97.54% and 99.45% across two specific cases.

Keywords: Wind turbines; Anomaly detection; DeepSVDD; Autoencoder; Unsupervised learning (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832025001954
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:260:y:2025:i:c:s0951832025001954

DOI: 10.1016/j.ress.2025.110995

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-04-30
Handle: RePEc:eee:reensy:v:260:y:2025:i:c:s0951832025001954