Reinforcement learning based maintenance scheduling of flexible multi-machine manufacturing systems with varying interactive degradation
Jiangxi Chen and
Xiaojun Zhou
Reliability Engineering and System Safety, 2025, vol. 260, issue C
Abstract:
In flexible multi-machine manufacturing systems, variations in product types dynamically influence machine loads, subsequently affecting the degradation processes of the machines. Moreover, the interactive degradation between the upstream and downstream machines, caused by the product quality deviations, changes with the different production routes for the variable product types. These factors, combined with the uncertain production schedules, present significant challenges for effective maintenance scheduling. To address these challenges, the maintenance scheduling problem is modeled as a Hidden-Mode Markov Decision Process (HM-MDP), where product types are treated as hidden modes that influence machine degradation and the subsequent maintenance decisions. The Interactive Degradation-Aware Proximal Policy Optimization (IDAPPO) reinforcement learning framework is introduced, enhancing the PPO algorithm with Graph Neural Networks (GNNs) to capture interactive degradation among machines and Long Short-Term Memory (LSTM) networks to handle temporal variations in production schedules. An entropy-based exploration strategy further manages the uncertainty of production schedules, enabling IDAPPO to adaptively optimize maintenance actions. Extensive experiments on both small-scale (5-machine) and large-scale (24-machine) systems demonstrate significantly reduced system losses and accelerated convergence of IDAPPO compared to the baseline approaches. These results indicate that IDAPPO provides a scalable and adaptive solution for improving the efficiency and reliability of complex manufacturing environments.
Keywords: Flexible manufacturing system; Maintenance scheduling; Interactive degradation; Hidden-Mode Markov Decision Process; Reinforcement learning; Graph neural network (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832025002194
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:260:y:2025:i:c:s0951832025002194
DOI: 10.1016/j.ress.2025.111018
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().