EconPapers    
Economics at your fingertips  
 

Uncertainty evaluation of the debris flow impact considering spatially varying basal friction and solid concentration

Hongyu Luo, Limin Zhang, Jian He and Jiawen Zhou

Reliability Engineering and System Safety, 2025, vol. 263, issue C

Abstract: The inherent spatial variability of soil is reported to significantly impact landslide debris behaviors. In this study, the effect of spatial variability on the inundation and impact processes of debris flow is investigated using a multi-phase depth-averaged model. The dynamic process of a debris flow, considering spatial variabilities of basal friction and initial solid concentration, is explored via Monte Carlo simulation. The results show that due to the flow channel constrain and spatial averaging, the influences of spatial variability on the global impact of debris flow are not significant. However, remarkable influences on the local impact are found. From the upstream of flow channel to the downstream of river, there is a decreasing trend in uncertainties regarding the material composition and flow dynamics at local spots. In the flow channel, the mean values of flow depths are smaller than those in the deterministic analysis, while those of flow velocities are larger. In the river, both the mean values of flow depths and velocities are close to those in the deterministic analysis while their variations remain significant even downstream of river. The findings provide insights into the spatial variability effects on debris flow impact and facilitate risk assessment.

Keywords: Landslide; Debris flow; Runout process; Spatial variability; Random field (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832025004843
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:263:y:2025:i:c:s0951832025004843

DOI: 10.1016/j.ress.2025.111283

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-06-18
Handle: RePEc:eee:reensy:v:263:y:2025:i:c:s0951832025004843