EconPapers    
Economics at your fingertips  
 

A vision transformer-based method for predicting seismic damage states of RC piers: Database development and efficient assessment

Yalin Li, Zhen Sun, Yaqi Li, Hao Yang, Xiaohang Liu and Weidong He

Reliability Engineering and System Safety, 2025, vol. 263, issue C

Abstract: The structural safety of bridges, particularly the ability to predict the damage states of reinforced concrete (RC) piers under seismic action, has become a critical issue in structural engineering. This study employs deep learning techniques to enable efficient prediction and assessment of damage states in-service RC bridge piers subjected to seismic events. To support model training, a parametric sample set of 100 bridge piers is generated using Latin Hypercube Sampling, leading to the development of a comprehensive seismic response database containing 66,000 samples across 15 defined damage states. These databases account for inherent seismic randomness, complex failure modes, and time-dependent composite evaluation indicators. A novel deep learning framework, CC-ViT, based on the Vision Transformer architecture, is proposed. This framework integrates Continuous Wavelet Transform, Context Anchored Attention, and DropKey techniques to enhance feature extraction and model generalization. Multiple models are trained and evaluated in a supervised learning setting. Comparative analysis reveals that CC-ViT achieved the highest test accuracy at 85 %. Grad-CAM-based interpretability analysis further confirms that CC-ViT effectively captures critical regions in the seismic response spectrum, supporting informed and explainable decision-making. To facilitate practical implementation, an end-to-end interactive software tool has been developed for efficient prediction of pier damage states. The findings contribute valuable insights for data-driven decision-making aimed at enhancing infrastructure safety and maintenance in smart cities.

Keywords: Damage state prediction; Vision Transformer; Continuous wavelet transform; Seismic response database; RC pier; Interpretable analysis (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832025004880
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:263:y:2025:i:c:s0951832025004880

DOI: 10.1016/j.ress.2025.111287

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-06-18
Handle: RePEc:eee:reensy:v:263:y:2025:i:c:s0951832025004880