Reliability analysis and layout optimization for a multi-component system with thermal coupling
Dong Xu,
Yubin Tian,
Dianpeng Wang and
Junbiao Shi
Reliability Engineering and System Safety, 2025, vol. 264, issue PB
Abstract:
An important feature of power and electronic devices is that their operation is accompanied by the release of heat, which leads to thermal coupling between components, that is, the interaction of temperatures between adjacent components. This phenomenon reflects spatial dependence and is rarely considered in reliability analyses. In this study, a reliability model was proposed for a multi-component system with thermal coupling and was subsequently extended to a competing failure model. Additionally, considering that different components have different workloads, components with higher workloads should be located further away from each other to reduce the probability of high temperatures caused by the simultaneous operation of the components, thus increasing the system’s reliability. Through the innovative use of the minimum energy criterion, we present a layout optimization approach to this issue. Furthermore, the larger the component spacing, the weaker the thermal coupling effect, the higher the system reliability, and the bulkier the system. Therefore, a trade-off must be made. A redundancy allocation problem was studied, that is, minimizing the system volume while considering a given reliability constraint. A numerical example demonstrates the effectiveness of layout optimization in improving reliability and illustrates the application of the proposed methods.
Keywords: Reliability; Thermal coupling; Markov process; Optimization (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832025005496
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:264:y:2025:i:pb:s0951832025005496
DOI: 10.1016/j.ress.2025.111348
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().