Statistical calibration of computer simulations
Katherine Campbell
Reliability Engineering and System Safety, 2006, vol. 91, issue 10, 1358-1363
Abstract:
This paper surveys issues associated with the statistical calibration of physics-based computer simulators. Even in solidly physics-based models there are usually a number of parameters that are suitable targets for calibration. Statistical calibration means refining the prior distributions of such uncertain parameters based on matching some simulation outputs with data, as opposed to the practice of “tuning†or point estimation that is commonly called calibration in non-statistical contexts. Older methods for statistical calibration are reviewed before turning to recent work in which the calibration problem is embedded in a Gaussian process model. In procedures of this type, parameter estimation is carried out simultaneously with the estimation of the relationship between the calibrated simulator and truth.
Keywords: Calibration; Simulation; Prediction errors; Calibrated prediction; Uncertainty analysis; Bayesian model calibration; Statistical emulation; Generalized likelihood uncertainty estimation; Regional sensitivity analysis (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832005002449
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:91:y:2006:i:10:p:1358-1363
DOI: 10.1016/j.ress.2005.11.032
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().