State space models for condition monitoring: a case study
Diego J. Pedregal and
Ma Carmen Carnero
Reliability Engineering and System Safety, 2006, vol. 91, issue 2, 171-180
Abstract:
A Condition Monitoring system can increase safety, quality and availability in industrial plants. Safety requirements are especially important in critical machineries, like a turbine driving a centrifugal compressor located at a petrochemical plant in the case study presented in this paper. A Condition Monitoring system is set up for vibration data coming from the turbine. Four years of monthly data observed at two different locations of the equipment are analysed. The core of the system is a model to forecast the state of the machine using data provided by the Condition Monitoring system at each moment in time. The model is based on the State Space framework whose associated recursive algorithms (Kalman Filter and Fixed Interval Smoothing) provide the basis for a number of different operations, from which the most important in the present context is the extrapolation of the distribution of forecasts on which the probability of failure is estimated. The cost model on which the decision of making a preventive replacement is taken is based on the ‘expected cost per unit time’ for a pre-determined critical value of the vibration measure. The system is thoroughly tested on the data.
Keywords: Condition monitoring; State space system; Kalman filter; Vibration analysis; Fixed interval smoother; Maximum likelihood (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832005000311
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:91:y:2006:i:2:p:171-180
DOI: 10.1016/j.ress.2004.12.001
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().