An alternative perspective on the mixture estimation problem
M. Nagode and
M. Fajdiga
Reliability Engineering and System Safety, 2006, vol. 91, issue 4, 388-397
Abstract:
The paper presents an alternative perspective on the mixture estimation problem. First, observations are counted into a histogram. Secondly, rough and enhanced parameter estimation followed by the separation of observations is done. Finally, the residue is distributed between the components by the Bayes decision rule. The number of components, the mixture component parameters and the component weights are modelled jointly, no initial parameter estimates are required, the approach is numerically stable, the number of components has no influence upon the convergence and the speed of convergence is very high. The alternative perspective is compared to the EM algorithm and verified through several data sets. The presented algorithm showed significant advantages compared to the competitive methods and has already been successfully applied in reliability and fatigue analyses.
Keywords: Mixture distributions; Predictive distribution; Normal mixtures; Mixture component parameter estimation; EM algorithm (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S095183200500058X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:91:y:2006:i:4:p:388-397
DOI: 10.1016/j.ress.2005.02.005
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().