Prediction of the human response time with the similarity and quantity of information
Sungjin Lee,
Gyunyoung Heo and
Soon Heung Chang
Reliability Engineering and System Safety, 2006, vol. 91, issue 6, 728-734
Abstract:
Memory is one of brain processes that are important when trying to understand how people process information. Although a large number of studies have been made on the human performance, little is known about the similarity effect in human performance. The purpose of this paper is to propose and validate the quantitative and predictive model on the human response time in the user interface with the concept of similarity. However, it is not easy to explain the human performance with only similarity or information amount. We are confronted by two difficulties: making the quantitative model on the human response time with the similarity and validating the proposed model by experimental work. We made the quantitative model based on the Hick's law and the law of practice. In addition, we validated the model with various experimental conditions by measuring participants' response time in the environment of computer-based display. Experimental results reveal that the human performance is improved by the user interface's similarity. We think that the proposed model is useful for the user interface design and evaluation phases.
Keywords: Human response time; Similarity; User interface design/evaluation (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832005001432
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:91:y:2006:i:6:p:728-734
DOI: 10.1016/j.ress.2005.06.004
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().