Fault-tolerant embedded system design and optimization considering reliability estimation uncertainty
Naruemon Wattanapongskorn and
David W. Coit
Reliability Engineering and System Safety, 2007, vol. 92, issue 4, 395-407
Abstract:
In this paper, we model embedded system design and optimization, considering component redundancy and uncertainty in the component reliability estimates. The systems being studied consist of software embedded in associated hardware components. Very often, component reliability values are not known exactly. Therefore, for reliability analysis studies and system optimization, it is meaningful to consider component reliability estimates as random variables with associated estimation uncertainty. In this new research, the system design process is formulated as a multiple-objective optimization problem to maximize an estimate of system reliability, and also, to minimize the variance of the reliability estimate. The two objectives are combined by penalizing the variance for prospective solutions. The two most common fault-tolerant embedded system architectures, N-Version Programming and Recovery Block, are considered as strategies to improve system reliability by providing system redundancy. Four distinct models are presented to demonstrate the proposed optimization techniques with or without redundancy. For many design problems, multiple functionally equivalent software versions have failure correlation even if they have been independently developed. The failure correlation may result from faults in the software specification, faults from a voting algorithm, and/or related faults from any two software versions. Our approach considers this correlation in formulating practical optimization models. Genetic algorithms with a dynamic penalty function are applied in solving this optimization problem, and reasonable and interesting results are obtained and discussed.
Keywords: Estimation uncertainty; Reliability analysis; Fault tolerance; Embedded system; Genetic algorithm (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832006000081
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:92:y:2007:i:4:p:395-407
DOI: 10.1016/j.ress.2005.12.011
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().