Level-1 probability safety assessment of the Iranian heavy water reactor using SAPHIRE software
F. Faghihi,
E. Ramezani,
F. Yousefpour and
S.M. Mirvakili
Reliability Engineering and System Safety, 2008, vol. 93, issue 10, 1377-1409
Abstract:
The main goal of this review paper is to analyze the total frequency of the core damage of the Iranian Heavy Water Research Reactor (IHWRR) compared with standard criteria and to determine the strengths and the weaknesses of the reactor safety systems towards improving its design and operation. The PSA has been considered for full-power state of the reactor and this article represents a level-1 PSA analysis using System Analysis Programs for Hands-On Integrated Reliability Evaluations (SAPHIRE) software. It is specifically designed to permit a listing of the potential accident sequences, compute their frequencies of occurrence and assign each sequence to a consequence. The method used for modeling the systems and accident sequences, is Large Fault Tree/Small Event Tree method. This PSA level-1 for IHWRR indicates that, based on conservative assumptions, the total frequency of accidents that would lead to core damage from internal initiating events is 4.44E−05 per year of reactor operation.
Keywords: PSA; Heavy water; Reactor; SAPHIRE; Probability; Safety (search for similar items in EconPapers)
Date: 2008
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832007002463
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:93:y:2008:i:10:p:1377-1409
DOI: 10.1016/j.ress.2007.10.002
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().