Applications to continuous-time processes of computational techniques for discrete-time renewal processes
Jan van Noortwijk and
J.A.M. van der Weide
Reliability Engineering and System Safety, 2008, vol. 93, issue 12, 1853-1860
Abstract:
For optimising maintenance, the total costs should be computed over a bounded or unbounded time horizon. In order to determine the expected costs of maintenance, renewal theory can be applied when we can identify renewals that bring a component back into the as-good-as-new condition. This publication presents useful computational techniques to determine the probabilistic characteristics of a renewal process. Because continuous-time renewal processes can be approximated with discrete-time renewal processes, it focusses on the latter processes. It includes methods to compute the probability distribution, expected value and variance of the number of renewals over a bounded time horizon, the asymptotic expansion for the expected value of the number of renewals over an unbounded time horizon, the approximation of a continuous renewal-time distribution with a discrete renewal-time distribution, and the extension of the discrete-time renewal model with the possibility of zero renewal times (in order to cope with an upper-bound approximation of a continuous-time renewal process).
Keywords: Discrete renewal process; Renewal function; Second-moment properties; Gamma process; Geometric distribution (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832008001063
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:93:y:2008:i:12:p:1853-1860
DOI: 10.1016/j.ress.2008.03.023
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().