Formalisation of a new prognosis model for supporting proactive maintenance implementation on industrial system
Alexandre Muller,
Marie-Christine Suhner and
Iung, Benoît
Reliability Engineering and System Safety, 2008, vol. 93, issue 2, 234-253
Abstract:
The importance of the maintenance function has increased because of its role in keeping and improving system availability and safety, as well as product quality. To support this role, the maintenance concept has undergone several major developments that have led to proactive considerations mainly based on a prognosis process, which normally allows selection of the best maintenance action to be carried out. This paper proposes the deployment and experimentation of a prognosis process within an e-maintenance architecture. The deployment follows a methodology based on the combination of both a probabilistic approach for modelling the degradation mechanism and of an event one for dynamical degradation monitoring. The feasibility and benefits of this new prognosis process is investigated with an experiment using a manufacturing TELMA (TELe-MAintenance) platform supporting the unwinding of metal bobbins.
Keywords: Proactive maintenance; Prognosis; Degradation; Process approach; Dysfunctional analysis; Dynamic Bayesian network (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S095183200600278X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:93:y:2008:i:2:p:234-253
DOI: 10.1016/j.ress.2006.12.004
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().