OpenSESAME—the simple but extensive, structured availability modeling environment
Max Walter,
Markus Siegle and
Arndt Bode
Reliability Engineering and System Safety, 2008, vol. 93, issue 6, 857-873
Abstract:
This article describes the novel stochastic modeling tool OpenSESAME which allows for a quantitative evaluation of fault-tolerant High-Availability systems. The input models are traditional reliability block diagrams (RBDs) which can be enriched with inter-component dependencies like failure propagation, failures with a common cause, different redundancy types, and non-dedicated repair. OpenSESAME offers a novel set of graphical diagrams to specify these dependencies. Due to the dependencies, traditional solution methods for RBDs cannot be applied to OpenSESAME models. We therefore present a novel evaluation method, which is based on the automatic generation of several state-based models, which are semantically equivalent to the high-level input model. Alternatively, either stochastic Petri nets or textual models based on a stochastic process algebra can be generated. The state-based models are then analyzed using existing solvers for these types of models. Three case studies exemplify the modeling power and usability of OpenSESAME.
Keywords: Dependability modeling; Reliability block diagrams; Stochastic dependencies; Web server; Adjunct processor; Fault-tolerant water supply (search for similar items in EconPapers)
Date: 2008
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832007001226
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:93:y:2008:i:6:p:857-873
DOI: 10.1016/j.ress.2007.03.034
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().