Computational methods for model reliability assessment
Ramesh Rebba and
Sankaran Mahadevan
Reliability Engineering and System Safety, 2008, vol. 93, issue 8, 1197-1207
Abstract:
This paper investigates various statistical approaches for the validation of computational models when both model prediction and experimental observation have uncertainties, and proposes two new methods for this purpose. The first method utilizes hypothesis testing to accept or reject a model at a desired significance level. Interval-based hypothesis testing is found to be more practically useful for model validation than the commonly used point null hypothesis testing. Both classical and Bayesian approaches are investigated. The second and more direct method formulates model validation as a limit state-based reliability estimation problem. Both simulation-based and analytical methods are presented to compute the model reliability for single or multiple comparisons of the model output and observed data. The proposed methods are illustrated and compared using numerical examples.
Keywords: Hypothesis testing; Model validation; p-value; Reliability; t-test (search for similar items in EconPapers)
Date: 2008
References: View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832007001998
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:93:y:2008:i:8:p:1197-1207
DOI: 10.1016/j.ress.2007.08.001
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().