EconPapers    
Economics at your fingertips  
 

SMV model-based safety analysis of software requirements

Kwang Yong Koh and Poong Hyun Seong

Reliability Engineering and System Safety, 2009, vol. 94, issue 2, 320-331

Abstract: Fault tree analysis (FTA) is one of the most frequently applied safety analysis techniques when developing safety-critical industrial systems such as software-based emergency shutdown systems of nuclear power plants and has been used for safety analysis of software requirements in the nuclear industry. However, the conventional method for safety analysis of software requirements has several problems in terms of correctness and efficiency; the fault tree generated from natural language specifications may contain flaws or errors while the manual work of safety verification is very labor-intensive and time-consuming. In this paper, we propose a new approach to resolve problems of the conventional method; we generate a fault tree from a symbolic model verifier (SMV) model, not from natural language specifications, and verify safety properties automatically, not manually, by a model checker SMV. To demonstrate the feasibility of this approach, we applied it to shutdown system 2 (SDS2) of Wolsong nuclear power plant (NPP). In spite of subtle ambiguities present in the approach, the results of this case study demonstrate its overall feasibility and effectiveness.

Keywords: Fault tree analysis (FTA); Symbolic model verifier (SMV); Safety analysis (search for similar items in EconPapers)
Date: 2009
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832008001166
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:94:y:2009:i:2:p:320-331

DOI: 10.1016/j.ress.2008.03.025

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:94:y:2009:i:2:p:320-331