Predictive maintenance policy for a gradually deteriorating system subject to stress
E. Deloux,
B. Castanier and
Bérenguer, C.
Reliability Engineering and System Safety, 2009, vol. 94, issue 2, 418-431
Abstract:
This paper deals with a predictive maintenance policy for a continuously deteriorating system subject to stress. We consider a system with two failure mechanisms which are, respectively, due to an excessive deterioration level and a shock. To optimize the maintenance policy of the system, an approach combining statistical process control (SPC) and condition-based maintenance (CBM) is proposed. CBM policy is used to inspect and replace the system according to the observed deterioration level. SPC is used to monitor the stress covariate. In order to assess the performance of the proposed maintenance policy and to minimize the long-run expected maintenance cost per unit of time, a mathematical model for the maintained system cost is derived. Analysis based on numerical results are conducted to highlight the properties of the proposed maintenance policy in respect to the different maintenance parameters.
Keywords: Predictive maintenance; Stochastic modeling; Control chart; Economic performance (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (33)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832008001336
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:94:y:2009:i:2:p:418-431
DOI: 10.1016/j.ress.2008.04.002
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().