An adaptive design and interpolation technique for extracting highly nonlinear response surfaces from deterministic models
D. Shahsavani and
A. Grimvall
Reliability Engineering and System Safety, 2009, vol. 94, issue 7, 1173-1182
Abstract:
Response surface methodologies can reveal important features of complex computer code models. Here, we suggest experimental designs and interpolation methods for extracting nonlinear response surfaces whose roughness varies substantially over the input domain. A sequential design algorithm for cuboid domains is initiated by selecting an extended corner/centre point design for the entire domain, then updated by decomposing this domain into disjoint cuboids and taking the corners and centre of these cuboids as new design points. A roughness criterion is used to control the domain decomposition so that the design becomes space-filling and the coverage is particularly good in the parts of the input domain where the response surface is strongly nonlinear. Finally, the model output at untried inputs is predicted by carefully selecting a local neighbourhood of each new point in the input space and fitting a full quadratic polynomial to the data points in that neighbourhood. Test runs showed that our sequential design algorithm automatically adapts to the nonlinear features of the model output. Moreover, our technique is particularly useful for extracting nonlinear response surfaces from computer code models with two to seven input variables. A simple modification of the outlined algorithm enables adequate handling of non-cuboid input domains.
Keywords: Computer experiments; Emulator; Exeperimental design; Response surface; Interpolation (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S095183200800255X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:94:y:2009:i:7:p:1173-1182
DOI: 10.1016/j.ress.2008.10.013
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().