EconPapers    
Economics at your fingertips  
 

Hierarchical adaptive experimental design for Gaussian process emulators

Daniel Busby

Reliability Engineering and System Safety, 2009, vol. 94, issue 7, 1183-1193

Abstract: Large computer simulators have usually complex and nonlinear input output functions. This complicated input output relation can be analyzed by global sensitivity analysis; however, this usually requires massive Monte Carlo simulations. To effectively reduce the number of simulations, statistical techniques such as Gaussian process emulators can be adopted. The accuracy and reliability of these emulators strongly depend on the experimental design where suitable evaluation points are selected. In this paper a new sequential design strategy called hierarchical adaptive design is proposed to obtain an accurate emulator using the least possible number of simulations. The hierarchical design proposed in this paper is tested on various standard analytic functions and on a challenging reservoir forecasting application. Comparisons with standard one-stage designs such as maximin latin hypercube designs show that the hierarchical adaptive design produces a more accurate emulator with the same number of computer experiments. Moreover a stopping criterion is proposed that enables to perform the number of simulations necessary to obtain required approximation accuracy.

Keywords: Sequential experimental design; Gaussian process regression; Data-adaptive modeling; Reservoir forecasting; Sensitivity analysis (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832008001968
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:94:y:2009:i:7:p:1183-1193

DOI: 10.1016/j.ress.2008.07.007

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:94:y:2009:i:7:p:1183-1193