EconPapers    
Economics at your fingertips  
 

A bridge network maintenance framework for Pareto optimization of stakeholders/users costs

Orcesi, André D. and Christian F. Cremona

Reliability Engineering and System Safety, 2010, vol. 95, issue 11, 1230-1243

Abstract: For managing highway bridges, stakeholders require efficient and practical decision making techniques. In a context of limited bridge management budget, it is crucial to determine the most effective breakdown of financial resources over the different structures of a bridge network. Bridge management systems (BMSs) have been developed for such a purpose. However, they generally rely on an individual approach. The influence of the position of bridges in the transportation network, the consequences of inadequate service for the network users, due to maintenance actions or bridge failure, are not taken into consideration. Therefore, maintenance strategies obtained with current BMSs do not necessarily lead to an optimal level of service (LOS) of the bridge network for the users of the transportation network. Besides, the assessment of the structural performance of highway bridges usually requires the access to the geometrical and mechanical properties of its components. Such information might not be available for all structures in a bridge network for which managers try to schedule and prioritize maintenance strategies. On the contrary, visual inspections are performed regularly and information is generally available for all structures of the bridge network. The objective of this paper is threefold (i) propose an advanced network-level bridge management system considering the position of each bridge in the transportation network, (ii) use information obtained at visual inspections to assess the performance of bridges, and (iii) compare optimal maintenance strategies, obtained with a genetic algorithm, when considering interests of users and bridge owner either separately as conflicting criteria, or simultaneously as a common interest for the whole community. In each case, safety and serviceability aspects are taken into account in the model when determining optimal strategies. The theoretical and numerical developments are applied on a French bridge network.

Keywords: Maintenance; Bridge network; Optimization; Genetic algorithm; Markov chains (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S095183201000147X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:95:y:2010:i:11:p:1230-1243

DOI: 10.1016/j.ress.2010.06.013

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-04-24
Handle: RePEc:eee:reensy:v:95:y:2010:i:11:p:1230-1243