Development of a code-agnostic computational infrastructure for the dynamic generation of accident progression event trees
Umit Catalyurek,
Benjamin Rutt,
Kyle Metzroth,
Aram Hakobyan,
Tunc Aldemir,
Richard Denning,
Sean Dunagan and
David Kunsman
Reliability Engineering and System Safety, 2010, vol. 95, issue 3, 278-294
Abstract:
Analysis of dynamic accident progression trees (ADAPT) is a mechanized procedure for the generation of accident progression event trees. Use of ADAPT substantially reduces the manual and computational effort for Level 2 probabilistic risk assessment (PRA) of nuclear power plants; reduces the likelihood of input errors; determines the order of events dynamically; and treats accidents in a phenomenology consistent manner. ADAPT is based on the concept of dynamic event trees which use explicit modeling of the deterministic dynamic processes that take place within the plant (through system simulation codes such as MELCOR, RELAP) for the modeling of stochastic system evolution. The computational infrastructure of ADAPT is presented, along with a prototype implementation of ADAPT using MELCOR for the PRA modeling of a station blackout in a pressurized water reactor. The computational infrastructure allows for flexibility in linking with different simulation codes, parallel processing of the scenarios under consideration, on-line scenario management (initiation as well as termination) and user-friendly graphical capabilities.
Keywords: Accident progression event trees; Dynamic event trees; Melcor; Probabilistic risk assessment (search for similar items in EconPapers)
Date: 2010
References: View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S095183200900252X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:95:y:2010:i:3:p:278-294
DOI: 10.1016/j.ress.2009.10.008
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().