On buffered failure probability in design and optimization of structures
R.T. Rockafellar and
J.O. Royset
Reliability Engineering and System Safety, 2010, vol. 95, issue 5, 499-510
Abstract:
In reliability engineering focused on the design and optimization of structures, the typical measure of reliability is the probability of failure of the structure or its individual components relative to specific limit states. However, the failure probability has troublesome properties that raise several theoretical, practical, and computational issues. This paper explains the seriousness of these issues in the context of design optimization and goes on to propose a new alternative measure, the buffered failure probability, which offers significant advantages. The buffered failure probability is handled with relative ease in design optimization problems, accounts for the degree of violation of a performance threshold, and is more conservative than the failure probability.
Keywords: Failure probability; Structural reliability; Reliability-based design optimization (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (27)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832010000177
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:95:y:2010:i:5:p:499-510
DOI: 10.1016/j.ress.2010.01.001
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().