Uncertainty analysis using evidence theory – confronting level-1 and level-2 approaches with data availability and computational constraints
Philipp Limbourg and
Etienne de Rocquigny
Reliability Engineering and System Safety, 2010, vol. 95, issue 5, 550-564
Abstract:
Dempster–Shafer Theory of Evidence (DST), as an alternative or complementary approach to the representation of uncertainty, is gradually being explored with complex practical applications beyond purely algebraic examples. This paper reviews literature documenting such complex applications and studies its applicability from the point of view of the nature and amount of data that is typically available in industrial risk analysis: medium-size frequential observations for aleatory components, small noised datasets for model parameters and expert judgment for other components. On the basis of a simple flood model encoding typical risk analysis features, different approaches to quantify uncertainty in DST are reviewed and benchmarked in that perspective: (i) combining all sources of uncertainty under a single-level DST model; (ii) separating aleatory and epistemic uncertainties, respectively, modeled with a first probabilistic layer and a second one under DST. Methods for handling data in probabilistic studies such as Kolmogorov–Smirnov tests and quantile–quantile plots are transferred to the domain of DST. We illustrate how data availability guides the choice of the settings and how results and sensitivity analyses can be interpreted in the domain of DST, concluding with recommendations for industrial practice.
Keywords: Imprecise probability; Dempster–Shafer; Epistemic uncertainty; Aleatory uncertainty; Flood protection (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832010000219
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:95:y:2010:i:5:p:550-564
DOI: 10.1016/j.ress.2010.01.005
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().