An approach for prediction of petroleum production facility performance considering Arctic influence factors
Xueli Gao,
Javad Barabady and
Tore Markeset
Reliability Engineering and System Safety, 2010, vol. 95, issue 8, 837-846
Abstract:
As the oil and gas (O&G) industry is increasing the focus on petroleum exploration and development in the Arctic region, it is becoming increasingly important to design exploration and production facilities to suit the local operating conditions. The cold and harsh climate, the long distance from customer and suppliers’ markets, and the sensitive environment may have considerable influence on the choice of design solutions and production performance characteristics such as throughput capacity, reliability, availability, maintainability, and supportability (RAMS) as well as operational and maintenance activities. Due to this, data and information collected for similar systems used in a normal climate may not be suitable. Hence, it is important to study and develop methods for prediction of the production performance characteristics during the design and operation phases.
Keywords: Production performance; Reliability; Maintainability; Throughput capacity; Arctic; Oil and gas (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (21)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832010000773
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:95:y:2010:i:8:p:837-846
DOI: 10.1016/j.ress.2010.03.011
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().