Particle filtering prognostic estimation of the remaining useful life of nonlinear components
Enrico Zio and
Giovanni Peloni
Reliability Engineering and System Safety, 2011, vol. 96, issue 3, 403-409
Abstract:
Bayesian estimation techniques are being applied with success in component fault diagnosis and prognosis. Within this framework, this paper proposes a methodology for the estimation of the remaining useful life of components based on particle filtering. The approach employs Monte Carlo simulation of a state dynamic model and a measurement model for estimating the posterior probability density function of the state of a degrading component at future times, in other words for predicting the time evolution of the growing fault or damage state. The approach avoids making the simplifying assumptions of linearity and Gaussian noise typical of Kalman filtering, and provides a robust framework for prognosis by accounting effectively for the uncertainties associated to the estimation. Novel tailored estimators are built for higher accuracy. The proposed approach is applied to a crack fault, with satisfactory results.
Keywords: Life prognosis; Particle filtering; Monte Carlo estimation; Crack propagation (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (36)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832010002152
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:96:y:2011:i:3:p:403-409
DOI: 10.1016/j.ress.2010.08.009
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().