EconPapers    
Economics at your fingertips  
 

Integrating several formalisms in order to increase Fault Trees' modeling power

Daniele Codetta-Raiteri

Reliability Engineering and System Safety, 2011, vol. 96, issue 5, 534-544

Abstract: The Fault Tree (FT) is a widespread model in the field of Reliability, but its modeling power is very limited. Therefore, several FT extensions have been proposed in the literature, each introducing particular modeling primitives, but in a separate way. In this paper, we integrate the primitives coming from three relevant FT extensions (parametric, dynamic, and repairable FT), into the formalism called generalized FT (GFT). We define each primitive in such a way that it can be combined with any other one. This allows to compactly represent redundancies and symmetries of the system structure, set several kinds of dependency among the events, and model repair processes, in the same model. The paper provides also the analysis process for GFT models, based on the modular approach. In particular, we provide the conditions to detect modules, considering the presence of all the primitives. Besides modules, we exploit the parametric form also at the solution level, with the aim of reducing the cost of analysis.

Keywords: Fault Trees; Boolean gates; Dynamic gates; Repair; Parametric form; Modules (search for similar items in EconPapers)
Date: 2011
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832010002838
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:96:y:2011:i:5:p:534-544

DOI: 10.1016/j.ress.2010.12.027

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:96:y:2011:i:5:p:534-544