A case study for quantifying system reliability and uncertainty
Alyson G. Wilson,
Christine M. Anderson-Cook and
Aparna V. Huzurbazar
Reliability Engineering and System Safety, 2011, vol. 96, issue 9, 1076-1084
Abstract:
The ability to estimate system reliability with an appropriate measure of associated uncertainty is important for understanding its expected performance over time. Frequently, obtaining full-system data is prohibitively expensive, impractical, or not permissible. Hence, methodology which allows for the combination of different types of data at the component or subsystem levels can allow for improved estimation at the system level. We apply methodologies for aggregating uncertainty from component-level data to estimate system reliability and quantify its overall uncertainty. This paper provides a proof-of-concept that uncertainty quantification methods using Bayesian methodology can be constructed and applied to system reliability problems for a system with both series and parallel structures.
Keywords: Bayesian; Multilevel data; Reliability block diagram; Monte Carlo (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832011000615
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:96:y:2011:i:9:p:1076-1084
DOI: 10.1016/j.ress.2010.09.012
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().