EconPapers    
Economics at your fingertips  
 

Rigorous uncertainty quantification without integral testing

U. Topcu, L.J. Lucas, H. Owhadi and M. Ortiz

Reliability Engineering and System Safety, 2011, vol. 96, issue 9, 1085-1091

Abstract: We describe a rigorous approach for certifying the safe operation of complex systems that bypasses the need for integral testing. We specifically consider systems that have a modular structure. These systems are composed of subsystems, or components, that interact through unidirectional interfaces. We show that, for systems that have the structure of an acyclic graph, it is possible to obtain rigorous upper bounds on the probability of failure of the entire system from an uncertainty analysis of the individual components and their interfaces and without the need for integral testing. Certification is then achieved if the probability of failure upper bound is below an acceptable failure tolerance. We demonstrate the approach by means of an example concerned with the performance of a fractal electric circuit.

Keywords: Certification; Uncertainty quantification; Concentration of measure; Modular systems (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832011000627
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:96:y:2011:i:9:p:1085-1091

DOI: 10.1016/j.ress.2010.07.013

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:96:y:2011:i:9:p:1085-1091