EconPapers    
Economics at your fingertips  
 

Quantification of margins and uncertainties of complex systems in the presence of aleatoric and epistemic uncertainty

Angel Urbina, Sankaran Mahadevan and Thomas L. Paez

Reliability Engineering and System Safety, 2011, vol. 96, issue 9, 1114-1125

Abstract: Performance assessment of complex systems is ideally done through full system-level testing which is seldom available for high consequence systems. Further, a reality of engineering practice is that some features of system behavior are not known from experimental data, but from expert assessment, only. On the other hand, individual component data, which are part of the full system are more readily available. The lack of system level data and the complexity of the system lead to a need to build computational models of a system in a hierarchical or building block approach (from simple components to the full system). The models are then used for performance prediction in lieu of experiments, to estimate the confidence in the performance of these systems. Central to this are the need to quantify the uncertainties present in the system and to compare the system response to an expected performance measure. This is the basic idea behind Quantification of Margins and Uncertainties (QMU). QMU is applied in decision making—there are many uncertainties caused by inherent variability (aleatoric) in materials, configurations, environments, etc., and lack of information (epistemic) in models for deterministic and random variables that influence system behavior and performance. This paper proposes a methodology to quantify margins and uncertainty in the presence of both aleatoric and epistemic uncertainty. It presents a framework based on Bayes networks to use available data at multiple levels of complexity (i.e. components, subsystem, etc.) and demonstrates a method to incorporate epistemic uncertainty given in terms of intervals on a model parameter.

Keywords: Margin and uncertainty quantification; Aleatoric and epistemic uncertainty; Bayes networks (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832011000640
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:96:y:2011:i:9:p:1114-1125

DOI: 10.1016/j.ress.2010.08.010

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:96:y:2011:i:9:p:1114-1125