Estimating spatial autoregressions under heteroskedasticity without searching for instruments
Yong Bao
Regional Science and Urban Economics, 2024, vol. 106, issue C
Abstract:
This paper proposes estimating higher-order spatial autoregressions with spatial autoregressive errors and heteroskedastic error innovations without searching for instruments by explicitly exploiting the endogeneity of spatial lags in the outcome and error equations. The resulting estimator is shown to be consistent and asymptotically normal. Monte Carlo experiments demonstrate that it possesses better finite-sample properties than existing estimators. An empirical study of venture capital funding for biotechnology firms illustrates that spatial correlation stretches as far as 20 miles and that the number of venture capital firms in close proximity has stronger impact on the level of funding than as reported in an existing study.
Keywords: Spatial autoregressions; Heteroskedasticity; Endogeneity (search for similar items in EconPapers)
JEL-codes: C13 C21 C31 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0166046224000358
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:regeco:v:106:y:2024:i:c:s0166046224000358
DOI: 10.1016/j.regsciurbeco.2024.104011
Access Statistics for this article
Regional Science and Urban Economics is currently edited by D.P McMillen and Y. Zenou
More articles in Regional Science and Urban Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().