Mortgage default decisions in the presence of non-normal, spatially dependent disturbances
Raffaella Calabrese (raffaella.calabrese@ed.ac.uk),
Meagan McCollum and
R. Kelley Pace
Regional Science and Urban Economics, 2019, vol. 76, issue C, 103-114
Abstract:
We develop a flexible binary choice model for mortgage default decisions that incorporates neighborhood effects in the disturbances. The main advantage of the model lies in its performance in providing improved estimates of the probability of default for risky mortgage loans. In addition, it can be applied to portfolios with a high number of loans. Assuming mortgage decisions with spatially dependent disturbances, the proposed approach uses the generalized extreme value distribution to flexibly model the error terms. To estimate the model on a large sample size, we use a variant of the Geweke-Hajivassiliou-Keane algorithm. We apply the proposed model and its competitors to a large dataset on almost 300,000 mortgages in Clark County, which includes Las Vegas, over 2009–2010. The results show that our proposal greatly improves the predictive accuracy of identifying loans that will default. Moreover, the competitor models underestimate credit Value at Risk.
Keywords: Binary imbalanced samples; Spatial econometrics; Generalized extreme value distribution; Mortgage default decisions (search for similar items in EconPapers)
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0166046217304015
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:regeco:v:76:y:2019:i:c:p:103-114
DOI: 10.1016/j.regsciurbeco.2019.01.001
Access Statistics for this article
Regional Science and Urban Economics is currently edited by D.P McMillen and Y. Zenou
More articles in Regional Science and Urban Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu (repec@elsevier.com).