EconPapers    
Economics at your fingertips  
 

A review of integrating ice detection and mitigation for wind turbine blades

Ezieddin Madi, Kevin Pope, Weimin Huang and Tariq Iqbal

Renewable and Sustainable Energy Reviews, 2019, vol. 103, issue C, 269-281

Abstract: The capacity of installed wind power is growing rapidly in cold climate regions; however, turbine blades are susceptible to ice accumulation. The aerodynamic properties of turbine blades are highly sensitive to ice accretion, which can significantly impair aerodynamic performance. Ice accretion on the blades of a wind turbine can lead to turbine shutdown, power loss and damage to turbine components. To prevent ice formation on wind turbine blades, an ice sensor integrated with an ice mitigation system is required. The ice sensor can be used with a de-icer on the blade surface. However, the current ice sensing and de-icing technologies are inefficient and integrated systems need appreciable improvement. This paper reviews ice sensing and active mitigation techniques for a wind turbine blade surface, which are categorized based on several key parameters. Furthermore, this paper investigates the conceptual design of integrating ice sensing and mitigation systems. The advantages and disadvantages of the integrated systems are presented to provide valuable insights on ice prevention for wind turbines operating in ice prone locations.

Keywords: Wind power; Ice mitigation; Ice sensing (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032118308141
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:103:y:2019:i:c:p:269-281

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2018.12.019

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:rensus:v:103:y:2019:i:c:p:269-281