EconPapers    
Economics at your fingertips  
 

Capture and simulation of the ocean environment for offshore renewable energy

S. Draycott, B. Sellar, T. Davey, D.R. Noble, V. Venugopal and D.M. Ingram

Renewable and Sustainable Energy Reviews, 2019, vol. 104, issue C, 15-29

Abstract: The offshore renewable energy sector has challenging requirements related to the physical simulation of the ocean environment for the purpose of evaluating energy generating technologies. In this paper the demands of the wave and tidal energy sectors are considered, with measurement and characterisation of the environment explored and replication of these conditions described. This review examines the process of advanced ocean environment replication from the sea to the tank, and rather than an exhaustive overview of all approaches it follows the rationale behind projects led, or strongly connected to, the late Professor Ian Bryden. This gives an element of commonality to the motivations behind marine data acquisition programmes and the facilities constructed to take advantage of the resulting datasets and findings. This review presents a decade of flagship research, conducted in the United Kingdom, at the interfaces between physical oceanography, engineering simulation tools and industrial applications in the area of offshore renewable energy. Wave and tidal datasets are presented, with particular emphasis on the novel tidal measurement techniques developed for tidal energy characterisation in the Fall of Warness, Orkney, UK. Non-parametric wave spectra characterisation methodologies are applied to the European Marine Energy Centre's (EMEC) Billia Croo wave test site, giving complex and highly realistic site-specific directional inputs for simulation of wave energy sites and converters. Finally, the processes of recreating the resulting wave, tidal, and combined wave-current conditions in the FloWave Ocean Energy Research Facility are presented. The common motivations across measurement, characterisation, and test tank are discussed with conclusions drawn on the strengths, gaps and challenges associated with detailed site replication.

Keywords: Offshore renewable energy; Resource characterisation; Tank testing; Wave-current interaction; Directional wave conditions; Site replication (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032119300115
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:104:y:2019:i:c:p:15-29

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2019.01.011

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:rensus:v:104:y:2019:i:c:p:15-29