Effect of various blended fuels on syngas quality and performance in catalytic co-gasification: A review
Muddasser Inayat,
Shaharin A. Sulaiman,
Jundika Candra Kurnia and
Muhammad Shahbaz
Renewable and Sustainable Energy Reviews, 2019, vol. 105, issue C, 252-267
Abstract:
Gasification is a well proven thermal conversion technology that has been used to convert solid fuel into gaseous fuel. There are different types of conventional feedstocks such as coal and biomass that have been gasified in either individual or blended form. The advantage of co-gasification over typical gasification is the ability to obtain the desired product gas composition by varying the blending ratio and feedstock. Furthermore, it is applicable for many feedstocks such as sewage sludge, black liquor, glycerol, and municipal solid waste. These feedstocks have good thermophysical properties, however, gasification of these feedstocks is difficult using a conventional technique, thus highlighting the need for co-gasification. Recently, the effect of feedstock type and their blending for syngas production have attracted interest among researchers especially when feedstocks are non-conventional. Several review articles have been published on gasification of individual coal and biomass. However, no review that exhaustively dealt with the catalytic co-gasification of a different kind of conventional and non-conventional feedstock. The feedstock type and blending ratio of feedstock are the most important parameters that affect the co-gasification process. The objective of the current paper is therefore to review the effect of feedstock type and their blending ratio on syngas quality, co-gasification performance, and tar formation for catalytic co-gasification of both conventional and non-conventional feedstocks. This review highlights the need for research and development in co-gasification and also provides the research gap for further research to develop a state of art technologies.
Keywords: Catalytic co-gasification; Blending ratio; Syngas quality; Tar formation (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (28)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S136403211930084X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:105:y:2019:i:c:p:252-267
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2019.01.059
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().