EconPapers    
Economics at your fingertips  
 

Hybridization of solid oxide electrolysis-based power-to-methane with oxyfuel combustion and carbon dioxide utilization for energy storage

Valerie Eveloy

Renewable and Sustainable Energy Reviews, 2019, vol. 108, issue C, 550-571

Abstract: The storage of excess or low-carbon electricity in the form of synthetic gas using power-to-gas technologies is a promising approach to enable high shares of renewables in power generation and reduce the fuel carbon content. However, the efficiency of standalone, low-temperature electrolysis-based power-to-methane (PtM) processes is presently limited. As a way of enhancing the potential of this technology to support the decarbonization of energy systems, this study investigates a high-temperature electrolysis-based PtM process and its integration with oxyfuel combustion to co-generate synthetic methane, heat and power. The system incorporates in-situ heat, oxygen, carbon dioxide (CO2) and water recycling. The energy and exergy-based performance of the compound system and its main structures are investigated using an overpotential-based electrochemical model. Depending on electrolysis operating temperature (800–1000 °C) and pressure (1–10 bar), overall energy and exergy efficiencies range from 75.8% to 79.3% and 64.5% to 67.4%, respectively. In quasi-continuous operation, a 6.4 MWe (AC input) hybrid PtM system would avoid approximately 1.9 GWhe of electricity consumption for oxygen-air separation, and sink 6.6 kt of CO2 from the oxyfuel co-generation plant annually. In parallel, 3.1 MWth of heat could be recovered from the pre-methanation compressor and oxyfuel conversion products for use in external applications. Based on a carbon balance evaluation from initial resource extraction to SNG conversion, the PtM-oxyfuel hybridization investigated could effectively contribute to raise the electricity greenhouse gas (GHG) emission threshold below which SNG could environmentally compete with natural gas, relative to low-temperature electrolysis-based PtM and conventional post-combustion CO2 capture.

Keywords: Power-to-gas; Solid oxide electrolysis; Methanation; Oxycombustion; Synthetic natural gas; Carbon balance (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032119301200
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:108:y:2019:i:c:p:550-571

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2019.02.027

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:rensus:v:108:y:2019:i:c:p:550-571