Application of artificial neutral network and geographic information system to evaluate retrofit potential in public school buildings
F. Re Cecconi,
N. Moretti and
L.C. Tagliabue
Renewable and Sustainable Energy Reviews, 2019, vol. 110, issue C, 266-277
Abstract:
School buildings in Italy are outdated, in critical maintenance conditions and they often perform below acceptable service levels and quality standards. Nevertheless, data supporting renovation policies are missing or very expensive to be obtained. The paper presents a method for evaluating building's energy savings potential, using the Building Energy Certification (Certificazione Energetica degli Edifici - CENED) open database. The aim of the research concerns the development of a data-driven set of methods, based on the use of open data, machine learning (ML) and Geographic Information Systems (GIS) to support regional energy retrofit policies on school buildings. The main advantage concerns the possibility to predict the post-retrofit energy savings, avoiding the expensive on-site Condition Assessment (CA) phase. Data have been first clustered to identify the most common thermo-physical properties of the envelope, then three retrofit scenarios have been defined, to allow the retrofit of homogeneous types of buildings. The energy saving potentials have been evaluated through the implementation of eight Artificial Neural Networks. Ultimately, data have been geolocated and further processed to support the definition of the energy retrofit policies for the most critical regional areas. The Lombardy region has been chosen as case study to test the robustness of the proposed methods. The results of the case study proved that school buildings energy retrofit policies can be supported and defined using available open data, ML and GIS. The future developments of the research concern the further integration of GIS for retrofit cost assessment and scenario analysis.
Keywords: Energy retrofit; School buildings; Open data; Artificial neural networks (ANN); Geographical Information System (GIS); Data-driven process (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032119302941
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:110:y:2019:i:c:p:266-277
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2019.04.073
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().