EconPapers    
Economics at your fingertips  
 

A review of biomass gasification modelling

Sahar Safarian, Rúnar Unnþórsson and Christiaan Richter

Renewable and Sustainable Energy Reviews, 2019, vol. 110, issue C, 378-391

Abstract: Currently around 10% of all energy generated worldwide comes from biomass. Most of this 10% is biofuel energy from the fermentation of corn and sugarcane. Fermentation of corn competes with the global food supply, and fermentation of sugarcane drives deforestation. Therefore, the renewable and sustainable growth of these two bio-based energy sources may not be desirable even if it is economically feasible. Biomass gasification by contrast is significantly more flexible in terms of the bio-feedstock or waste that can be processed to either produce biofuels or to co-generate electricity and heat on demand. Fluidized bed and entrained flow gasifiers already achieve promising economy-of-scale for fuel production whilst downdraft gasifiers are well-suited for small-scale heat and power co-generation. This superior flexibility of gasification both in terms of the feedstock type and also the energy generation or fuel production options, is what drives expanding research and implementation opportunities for biomass gasification. Research progress is accelerated by modelling work. This review is the first review in the biomass gasification modelling field to collect and analyze statistics on the growing number of gasification modelling studies and approaches used. The frequency of the various modelling choices made, and the trends this data reveals, is reported. For new researchers this review provides a succinct guide to the modelling choices that needs to made early on in a modelling study or project. A detailed methodology characterization is introduced that includes consequential modelling choices not explicitly addressed by prior reviews. To seasoned researchers this study provides the first statistical (as opposed to ad hoc or anecdotal) picture of what their fellow researchers are doing.

Keywords: Biomass; Gasification; Equilibrium model; Stoichiometric model; Kinetic model; Tar (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6) Track citations by RSS feed

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032119303090
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:110:y:2019:i:c:p:378-391

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2019.05.003

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2021-06-30
Handle: RePEc:eee:rensus:v:110:y:2019:i:c:p:378-391