EconPapers    
Economics at your fingertips  
 

A comprehensive study of the effect of bipolar plate (BP) geometry design on the performance of proton exchange membrane (PEM) fuel cells

Tabbi Wilberforce, Zaki El Hassan, Emmanuel Ogungbemi, O. Ijaodola, F.N. Khatib, A. Durrant, J. Thompson, A. Baroutaji and A.G. Olabi

Renewable and Sustainable Energy Reviews, 2019, vol. 111, issue C, 236-260

Abstract: Fuel cell efficiency is determined by many factors, including operational parameters such as electrochemical kinetics, cell operating temperature, mass transport, flow rates and other physical components in the cell stack like the membrane electrode assembly (MEA) as well as the bipolar plate (BP). The BP accounts for almost 70% of the mass of the stack and 30% of the overall price of the cell stack on the fuel cell market. The bipolar plate geometry design serves as the medium of entry of the reactive gases into the fuel cell and also functions as a platform for easy dissemination of the reactive substance onto the active surface of the cell stack. Its crucial role in the stack determines water management for the PEM fuel cell, thermal and electrical conductivity, mass transport and current density distribution. This research therefore aims to make a critical assessment of existing bipolar plate geometry design with respect to the maximum functionality of fuel cell (advantages and disadvantages of each design considered). The work thoroughly discusses some parameters that define an effective bipolar plate geometry design which is able to enhance the functionality of a cell stack. Furthermore, the work will serve as a guide to the fuel cell research community in the selection of a suitable geometry design for any fuel cell operating at varying conditions.

Keywords: Bipolar plate; Current density; Mass transport; Channel length; Proton exchange membrane fuel cell (PEMFC); Membrane (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (37)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032119303028
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:111:y:2019:i:c:p:236-260

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2019.04.081

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:rensus:v:111:y:2019:i:c:p:236-260