Life cycle environmental impacts of wind energy technologies: A review of simplified models and harmonization of the results
Barbara Mendecka and
Lidia Lombardi
Renewable and Sustainable Energy Reviews, 2019, vol. 111, issue C, 462-480
Abstract:
Nowadays, wind energy is taking on primary role within renewable energies scenario. However, impact of wind energy industry on the environment still requires to be fully understood and better quantified. This study provides an updated review of Life Cycle Assessment (LCA) studies of electricity produced from onshore and offshore wind turbines (WTs). Special emphasis is put on results harmonization and simplified LCA models existing in the literature. The synthesis of the results is performed for wide range of WTs capacities, providing an exhaustive and general frame of the environmental impacts of WTs systems. Moreover, new simplified LCA models, which make use of a non-linear regression, were developed in this work for the following impact categories: Acidification Potential (AP), Eutrophication Potential (EP), Global Warming Potential (GWP) and Cumulative Energy Demand (CED) and for onshore (1–5000 kW) and offshore (500–8000 kW) WTs. Nonlinear data fitting models are provided with a sufficiently high correlation coefficient for total life cycle impacts. Moreover, the proposed simplified LCA models predict the final results with acceptable uncertainty. This indicates that the one-term power series describes the behavior of the impact indicators accurately, providing a useful correlation to estimate the life cycle environmental performance for a specific turbine model with a given nominal power. Furthermore, obtained simplified LCA models were generalized for different site-specific wind conditions, i.e. wind speeds and wind classes. By analyzing all the considered impact indicators for electricity generation, we notice that the highest values of life cycle impacts of electricity, for a particular WT correspond to the highest wind velocities. This is particularly valid for low nominal power turbines, which seem to be significantly affected by wind conditions. The trends exhibit an asymptotic behavior, indicating that, on the contrary, wind conditions are a minor contributor to the environmental impact of large-scale systems.
Keywords: Systematic review; Wind turbines; Wind energy; Life cycle assessment; Environmental impact; Onshore; Offshore (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032119303259
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:111:y:2019:i:c:p:462-480
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2019.05.019
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().