Sorption based long-term thermal energy storage – Process classification and analysis of performance limitations: A review
B. Fumey,
R. Weber and
L. Baldini
Renewable and Sustainable Energy Reviews, 2019, vol. 111, issue C, 57-74
Abstract:
In sorption heat storage, one of the sources of discrepancy between theoretical material based energy storage potential and resulting system performance is the choice of process type. In this paper, in order to understand this performance deviation, a sorption heat storage process categorisation is proposed. This is followed by a review of reported sorption systems categorised according to the proposed process classification. An analysis of the reported systems is then undertaken, focusing on the ratio of resulting temperature gain in sorption (ad- or absorption), compared to required temperature lift in desorption. This measure is termed temperature effectiveness and enables a form of system performance evaluation in the broad landscape of sorption thermal energy storage demonstrators. It is argued that other performance parameters such as volumetric energy storage density and volumetric charge and discharge power density are not adequate for comparison due to the highly varying testing conditions applied. From the system evaluation, it is seen that best temperature effectiveness is generally found in a closed, transported process with the ability of single sorbent pass and true counter flow heat exchange.
Keywords: Long-term sorption thermal energy storage; Temperature effectiveness; Process categorisation; System performance evaluation; Comparison across basic designs; Evaluation of design dependent performance degradation (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032119303120
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:111:y:2019:i:c:p:57-74
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2019.05.006
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().