EconPapers    
Economics at your fingertips  
 

Perspectives of optical colourimetric sensors for anaerobic digestion

Jacob J. Lamb, Olivier Bernard, Shiplu Sarker, Kristian M. Lien and Dag Roar Hjelme

Renewable and Sustainable Energy Reviews, 2019, vol. 111, issue C, 87-96

Abstract: Although biogas is not a new approach to producing renewable fuel, it could further be developed to improve its potential as an alternative energy source. To achieve this, vast improvements in the efficiency and cost of biogas production are essential. These enhancements require detailed systematic monitoring to attain a near-optimal biogas production process. To date, there is a striking imbalance between the inherent biological complexity of anaerobic digestion, and the minimal information currently measured on-line. The objective of this review is to discuss how improvements in availability and cost of sensor technology used for determining the key compounds and their dynamics within the biogas processing plant will facilitate the further understanding of the biogas production process, preventing the biological process failure. In particular, colourimetric assays (sensor assays based on coloured dyes) for variable detection in anaerobic digestion provide a stable, multivariate system for the detection of Volatile Fatty Acids (VFAs), but also provide a much deeper insight into the process by assessing other parameters, which, to date have never been measured on-line. These sensor improvements will allow the biogas production, even on a small scale, to be guided in the optimum direction, avoiding the biological process from collapsing. This will result in improved efficiency, at a reduced operational cost. The potential of colourimetric assay methods for use in anaerobic digestion as a sensor technology with associated data analysis methodologies has not previously been observed. Here, a 23-dye colourimetric sensor array was experimentally assessed to exhibit the differentiation of 10 mM acetic acid, 5 mM propionic acid and 0.3 mM butyric acid. The feasibility of on-line, cost-effective, rapid, and efficient detection of VFAs together with other key parameters by these colourimetric sensor arrays is intended to be assessed to advocate their usage in AD.

Keywords: Volatile fatty acids; Biogas; Renewable energy; Anaerobic digestion; Optical sensors; Chemical sensors; Colourimetric sensors (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032119303041
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:111:y:2019:i:c:p:87-96

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2019.04.083

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:rensus:v:111:y:2019:i:c:p:87-96