EconPapers    
Economics at your fingertips  
 

Evaluation of the methane potential of different agricultural and food processing substrates for improved biogas production in rural areas

Natalia Herrero Garcia, Andrea Mattioli, Aida Gil, Nicola Frison, Federico Battista and David Bolzonella

Renewable and Sustainable Energy Reviews, 2019, vol. 112, issue C, 1-10

Abstract: Anaerobic Digestion is largely applied in the rural context because of its capability of stabilizing the organic matter while recovering biogas, thus renewable energy, and a renewable fertilizer, the digestate. In the present study, the methane yield of a large number of organic biomasses generated in the agro-industrial sector was evaluated by biomethane potential trials. More than 50 different organic substrates were grouped according to their chemical characteristics or their application in 7 major categories: energy crops, lignocellulosic by-products, herbaceous by-products, vegetable by-products, fruits by-products, livestock effluents and miscellaneous food processing by-products. Results demonstrated that the concentration and the nature of the organic matter is able to influence the methane production. Energy crops are among the more diffused substrates with about 200 million tons/year. Its wide adoption is justified by relative high methane yields (250–350 L CH4/kg TVS) and mainly by the rapid degradation rates with hydrolysis constant of about 0.15 d−1. By-products characterized by high content of lignocellulosic materials showed slower kinetics (0.05–0.09 d−1) and a methane production in the range of 150–400 L CH4/kg TVS, which increased with cellulose content. Livestock effluents had generally a lower methane yield (50–200 L CH4/kg TVS) as effect of the higher ammonia inhibiting compounds. Finally, food by products were characterized by a large methane production's range, 150–700 L CH4/kg TVS, due to heterogeneous nature of these substrates. Food by products rich in lipids content had the higher methane yield (400–700 L CH4/kg TVS), but showed the slowest kinetics (kh lower than 0.1 d−1). P Substrates rich in proteins and carbohydrates had lower methane yields (300–450 L CH4/kg TVS) but higher hydrolysis constants, generally upper than 0.1 d−1. Considering the global biomass generation of these substrates at European level, it was determined that their valorisation could contribute with an annual potential energy output of 2584 PJ (61.7 Mtoe), representing 5.7% of total energy consumed in EU- 28 in 2015 or 34,1% of total renewable energy in the same year.

Keywords: Biomethane potential test; Hydrolysis rate; Crops; Fruit by-products; Livestock effluents; Food processing by-products (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032119303533
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:112:y:2019:i:c:p:1-10

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2019.05.040

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:rensus:v:112:y:2019:i:c:p:1-10