EconPapers    
Economics at your fingertips  
 

The importance of atmospheric turbulence and stability in machine-learning models of wind farm power production

Mike Optis and Jordan Perr-Sauer

Renewable and Sustainable Energy Reviews, 2019, vol. 112, issue C, 27-41

Abstract: Machine learning is frequently applied in the wind energy industry to build statistical models of wind farm power production using atmospheric data as input. In the field of wind power forecasting, in particular, there has been substantial research into finding the best-performing learning algorithms that improve model predictions. Overlooked in the literature, however, is the influence of atmospheric turbulence and stability measurements in improving model predictions. It has been well-established through observations and physical models that these effects can have considerable influence on wind farm power production; yet consideration of these effects in statistical models is almost entirely absent from the literature. In this work, we examine the impact of atmospheric turbulence and stability inputs on statistical model predictions of wind farm power output. Hourly observations from a wind farm in the Pacific Northwest United States located in very complex terrain are used. Five common learning algorithms and nine atmospheric variables are considered, five of which represent some measure of turbulence or stability. We find a considerable improvement in hourly power predictions when some measure of turbulence or stability is included in the model. In particular, turbulent kinetic energy was found to be the most important variable apart from wind speed and more important than wind direction, pressure, and temperature. By contrast, the choice of learning algorithm is shown to be relatively less important in improving predictions. Based on this work, we recommend that turbulence and stability variables become standard inputs into statistical models of wind farm power production.

Keywords: Machine learning; Data mining; Wind farm power; Wind power forecasting; Atmospheric stability; Turbulence (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032119303442
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:112:y:2019:i:c:p:27-41

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2019.05.031

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:rensus:v:112:y:2019:i:c:p:27-41